Modeling spatial survival data using semiparametric frailty models.
نویسندگان
چکیده
We propose a new class of semiparametric frailty models for spatially correlated survival data. Specifically, we extend the ordinary frailty models by allowing random effects accommodating spatial correlations to enter into the baseline hazard function multiplicatively. We prove identifiability of the models and give sufficient regularity conditions. We propose drawing inference based on a marginal rank likelihood. No parametric forms of the baseline hazard need to be assumed in this semiparametric approach. Monte Carlo simulations and the Laplace approach are used to tackle the intractable integral in the likelihood function. Different spatial covariance structures are explored in simulations and the proposed methods are applied to the East Boston Asthma Study to detect prognostic factors leading to childhood asthma.
منابع مشابه
Cox and Frailty Models for Analysis of Esophageal Cancer Data
By existing censor and skewness in survival data, some models such as weibull are used to analyzing survival data. In addition, parametric and semiparametric models can be obtained from baseline hazard function of Cox model to fit to survival data. However these models are popular because of their simple usage but do not consider unknown risk factors, that's why cannot introduce the be...
متن کاملSpatial Modeling of Censored Survival Data
An important issue in survival data analysis is the identification of risk factors. Some of these factors are identifiable and explainable by presence of some covariates in the Cox proportional hazard model, while the others are unidentifiable or even immeasurable. Spatial correlation of censored survival data is one of these sources that are rarely considered in the literatures. In this paper,...
متن کاملTITLE: Short- and Long-Term Effects in Prostate Cancer Survival: Analysis of Treatment Efficacy and Risk Prediction PRINCIPAL INVESTIGATOR:
Introducing a random effect into the Cox model is a useful tool forbuilding hierarchical families of univariate semiparametric regressionsurvival models. Hougaard [1984] used the Laplace transform to buildfrailty models with explicitly defined survival functions and random ef-fects. The family derived from stable distributions was then extended[Aalen, 1992] to frailty va...
متن کاملfrailtyEM: An R Package for Estimating Semiparametric Shared Frailty Models
When analyzing correlated time to event data, shared frailty (random effect) models are particularly attractive. However, the estimation of such models has proved challenging. In semiparametric models, this is further complicated by the presence of the nonparametric baseline hazard. Although recent years have seen an increased availability of software for fitting frailty models, most software p...
متن کاملSemiparametric Normal Transformation Models for Spatially Correlated Survival Data
There is an emerging interest in modeling spatially correlated survival data in biomedical and epidemiologic studies. In this article we propose a new class of semiparametric normal transformation models for right-censored spatially correlated survival data. This class of models assumes that survival outcomes marginally follow a Cox proportional hazard model with unspecified baseline hazard, an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biometrics
دوره 58 2 شماره
صفحات -
تاریخ انتشار 2002